
J .  FZuid Mech. (1971), voE. 49, part 2, pp .  319-326 

Printed in  Great Britain 
319 

A model for the boundary condition of a 
porous material. Part 1 

By G. I. TAYLOR 
Trinity College, Cambridge 

(Received 20 December 1970) 

In  problems where a viscous fluid flows past a porous solid it has frequently been 
assumed that the tangential component of surface velocity is zero. When the 
porous solid has an open structure with large pores the external surface stress 
may produce a tangential flow below the surface. Recently, Beavers & Joseph 
(1967) have assumed that the surface velocity UB depends on the mean tangential 
stress [p(d'ii/dy)]y,o in the fluid outside the porous solid through the relation 

where Q is the volume flow rate per unit cross-section within the porous material 
due to the pressure gradient, k is the Darcy constant and a is a constant which 
depends only on the nature of the porosity. An artificial mathematical model 
of a porous medium is proposed for which the flow can be calculated both inside 
and outside the surface. This conceptual model was materialized and the experi- 
mental results agree with the calculations. The calculated values of a so found 
are not quite independent of the external means of producing the external tan- 
gential stress. 

1. Introduction 
Experiments by Beavers & Joseph (1967) have shown that, when a viscous 

fluid flows past a porous solid, tangential stress moves the fluid close below the 
surface with velocity UB which is slightly greater than Q, the velocity of the fluid 
in the bulk of the porous medium. They measured this difference by confining 
the fluid above the porous surface to a narrow channel of height h, and they found 
a slightly greater flow than would have occurred if UB were equal to Q. To analyze 
their measurements they assumed that UB-Q is related to the surface drag 
,u(du/dy),,, by the equation 

where k is the Darcy constant, namely the ratio ,uQ/(dp/dx), where Q is the volu- 
metric flow rate through unit area perpendicular to x under the action of a pres- 
sure gradient dp/dx.  a is a constant of the material which is assumed not to depend 
on h. It is reasonable to make this assumption as a limiting condition when h 
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is large compared, say, with k%, but some justification is required for the assump- 
tion that a depends only on the material and not on other features of the geometry 
of the measuring apparatus. For this reason it seemed desirable to invent an 
ideal porous material for which both k and a! could be calculated and compare 
the results of calculations with experiment. Such a material, consisting of parallel 
plates, has already been described (Taylor 1960) and the amount of fluid left 
behind when it is saturated with fluid and moved over a plane surface has been 

U 

FIGURE 1 

FIGURE 2 

calculated. In  this case the ideal material was in contact with the plane. When 
there is a gap, g ,  between the porous surface and the plane, the analysis can still 
be carried out, but it is much more complicated than in the case of the ‘mathe- 
matical paint brush’ just described. The analysis is similar to that given by 
Cockcroft (1927) in the context of an electrostatic problem but the parameters 
required for the present purpose are not the same as those discussed by 
Cockcroft. The necessary calculations have been carried out by Dr S. Richardson 
and are described by him in part 2 of this paper. 

The model to which the analysis applies is shown in figure 1 which also indicates 
the symbols used. A flat plate moves with velocity U parallel to the sheets of 
which the model is composed. The symbol u is used for the fluid velocity to con- 
form to Beavers & Joseph’s notation, but the analysis of part 2 is based on taking 
the plane perpendicular to this as (x, y). The experiments to  be described later 
were made with a disk (figure 2), containing concentric grooves of depth L 
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which was only 4 times their width s but the calculations show that there would 
be no significant difference if the depth of the grooves were infinite, as is assumed 
for the porous model. 

Beavers & Joseph point out that their method could not be expected to yield 
meaningful results when the grain sizes of the material are comparable with the 
height h of their channel. When there is no mean pressure gradient, as in the pre- 
sent experiment, the mean shear stress over planes parallel to the porous surface 
must be independent of y. If gvz is the shear stress at  any point and inertia effects 
are negligible 

g y z  = P (g+g), (2) 

where v is the component of velocity parallel to y and u that parallel to x .  The 
mean shear stress over planes perpendicular to the y axis is 

and this is true over any plane which does not actually intersect any possible 
protuberances from the porous material. For this reason diildy is independent of 
y even when the grains are comparable with g. 

The mean surface velocity U, has a meaning even when protuberances from the 
porous material are large and it can be determined by measuring the tangential 
stress on a smooth plate as it moves at height g above the porous surface. For 
this reason values of a, as defined in (1)’ are meaningful even though the gap g, 
which is analogous to Beavers & Joseph’s h, is smaller than the distance s 
between the planes of the porous model. 

2. Experimental apparatus for measuring shear stress 
As already indicated, it was not practical to measure the tangential reaction 

between the flat plate and the porous model (figure 1).  The grooved Perspex disk 
sketched in figure 2 was used. An accurately made circular Perspex dish A (figure 
3) of 14.2 cm internal radius was mounted centrally on a horizontal table which 
could rotate about a vertical axis, and was driven by a constant speed motor M 
through a variable reduction gear V. The grooved Perspex disk C (figures 2 and 3) 
of radius R = 5.5 cm was mounted centrally on the bottom of the dish A. This 
disk contained 17 grooves 0.8 cm deep and 0.2 cm wide separated by cylindrical 
tongues 0.1 cm thick and it was set with its upper surface as accurately horizontal 
as was possible, with a spirit level. Above it was suspended a brass disk D by 
means of a steel torsion wire E (30-7 cm long, 0-023 cm diameter). Though this 
disk and its spindle H were turned in one piece and the wire was central, the disk 
had to  be balanced by adding small weights before it could swing freely on its 
wire with only 0.004cm clearance at  all points over the grooved disk C. The 
upper end of the wire E was fixed in a circular protractor F. This could rotate 
on a horizontal table T which could be raised or lowered by means of a screw, 
S, with a 1/16 in. pitch and a graduated head J. To ensure that the height of the 
brass disk above the grooved surface was known, a micrometer was fixed to a 
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ground brass bar which could slide over the edge of the dish A. A conical point was 
fitted to the micrometer which could be screwed down till the point just met its 
image in the top of the brass disk D. That this measurement could be made without 
exerting any appreciable force on the disk was ensured by finding that the rise 
in the top of the torsion wire when it was turned was the same as that measured 

the micrometer. 

1 

3 

J4 

The angle of twist of the torsion wire was measured by reading the graduated 
head F and the brass disk was always brought to a fixed position by turning F 
till a radial line scribed on the top of the disk was under a fixed pointer G. 

3. Method of performing an experiment 
The dishA was filled with a Shell oil described as Talpa to a level 1 mm above the 

grooved disk. The brass disk hanging on its torsion wire was lowered onto the oil 
and, making sure that no bubbles had been trapped, it was allowed to settle for a 
day with the torsion wire loose so as to ensure that it was resting on the grooved 
disk. The wire was then very slowly tightened till the micrometer showed that the 
disk had begun to rise. As soon as this happened the brass disk would very slowly 
turn to  a fixed position and the pointer G was set to mark it. That the lower face 
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of the brass disk was horizontal was ensured because it very slowly returned to a 
fixed position after turning the dish A through an angle and leaving it stationary. 
This condition occurred as soon as the micrometer showed that the brass disk 
had lifted through 0.004 em. The first measurements were made when the gap was 
1/160th inch = 0.0159 em. The motor was started so that the grooved disk rotated 
once in T = 123 seconds. The torsion head F was rotated through q5 = 40.0' 
till it  brought the radial mark back under the pointer G. 

9 (-1 0-0159 0.0318 0.0477 0.0636 0.0777 
TP 4887 3338 2351 1951 1601 

4.40 3.00 2.115 1.723 1.440 ( t + s ) Q  

18-9 9.43 6.3 4.72 3.86 t + s  

9 
- 

TABLE 1 

The dish A (figure 3) was made to rotate at a number of different speeds so 
that the time of revolution T covered the range between 123 and 31.5sec and it 
was found that in that range T x q5" was nearly constant with mean value 4887. 
The measurement was repeated with g = 2, 3, 4 and 5 times 11160 in. and the 
resulting value of Tq5' given in line 2 of table 1. For the figures in line 3, G was 
taken as 196.9q5' and ,u as 3-64poise. 

4. Comparison with the calculation in part 2 
The torque, G, exerted on the brass disk by the rotating grooved disk has been 

calculated on the assumption that the tangential stress at radius r is the same as 
that which would exist in the linear model (figure 1) when a flat sheet distant 
g from the grooved sheet moves with velocity Slr, Sl being the angular velocity. 
The calculations in part 2 give (t + s) G/7r,uQR4 as a function of (t + s)/g in equations 
(2.14), (2.15) and (2.16). For the particular caseslt = 2, for whichtheexperiments 
were made, the results are shown in figure 4. If the disk had no grooves the simple 
calculation for a plane disk rotating at  a distance g above a flat plate shows that 
G/7rpQR4 = 1/29 and this relationship is shown in figure 4 by the straight line. 
The difference between the straight line and the curve is due to  the fact that U, 
is not zero as it would be if the disk had been flat and impermeable. 

To measure the torque G the torsional stiffness of the wire E was determined by 
a well-known method. The period of oscillation of the brass disk was first mea- 
sured. A body of known moment of inertia was then placed on it and the period 
of oscillation again measured. The result was that when the wire twisted through 
an angle 9 degrees the torque exerted by it on the brass disk was G = 196.99 
gm cm2 Except for the first measurement recorded in line 2 of table 1 
all were made at temperatures between 23.3 and 23.5"C. The viscosity of the 
Shell Talpa oil used was determined by the capillary tube method at  23.4' as 
3.64 poise. The angular velocity was measured by timing the passage of a mark 
on the turntable. If T sec is this period SZ = 27r/T. The calculated values of 
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(t + s) G/,unQR4 are shown as a function of (t + s)/g in figure 4 and the measured 
values by crosses. The agreement is good except in the case g = 0.0159 cm. When 
this measurement was made it was not appreciated that Talpa oil changes its 
viscosity nearly 10 % per degree at  20" C and sufficiently accurate tkmperature 
measurement may not have been made. 
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FIGURE 4 

5.  Calculation of a 
The primary object of this exercise was to find how far the assumption that 

a, as definedin (l), depends only on the structure of the porous material, is true. In  
the ideal porous model of figure 1 a calculation of flow between plates separated 
by a distance s shows that the Darcy constant is k = s3/12 (s + t ) ,  which in theex- 
periment was 2-22 x om2 so that kt = 4.7 x cm. Since there was no pres- 
sure gradient in my experiment Q = 0 and for the reason already given 

so that (4) 

Calculated values of (U  - UB)/U for the model are shown in figure 5 as a function of 
g / (s+ t )  for the case S / t  = 2. Writing (U- U,)/U = P,  ( 4 )  becomes 

a P 
k* - g ( l -  P )  

and the calculated values of M. are shown as a function of g/ (s  + t )  in figure 6 for 
the case s / t  = 2. It will be seen that as g increases there is a rapid decrease in a 
and when g has reached 0.5(s + t )  = 1.5 mm in the experiment a has nearly reached 
its asymptotic value 2.035. Since, by definition, a is associated with diildy, and 
diildy is constant through the whole region between the upper plate and the plane 
which touches the highest point in the surface of the porous medium, the 
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definition of a is meaningful even when the porous surface is rough. Figure 6 shows 
that in experiments to determine a the height g of the plane which gives rise to the 
velocity gradient need only be about half the spacing of neighbouring plates above 
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the model to ensure an accurate measurement of the limiting value and that 
measurements made with greater spacing give values which depend only on the 
properties of the porous material. The theoretical limiting values o f a  for different 
values of the porosity of the model are shown in figure 7. The limiting value of a 
as t + 0 and the porosity tends to 1.0 is 1.308. 
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It is worth noticing that if the resistance of a very porous material could be 
regarded as due to a very sparse distribution of points at  each of which the fluid 
exerts a force Apu, the corresponding value of a is 1.0. The equation for u in this 
case is 

dp d2U 

ax dy2 
--+PI- = nApu, 

where rt is the number of resistance points per unit volume. Darcy's law is ex- 
pressed by the equation 

nA = k-1 (7) 

I I I I I 1 I I I I I 

S I t  
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and the velocity Q of the flow inside the material far from the surface is 

The solution of (6) for which u = Q when y --f - 00 is 
u -& = (Us-&)e"'k t ) 

so that 

and comparing (9) with (1) it will be seen that for this model a = 1.0. 
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